Rational Approach

Learning O-Level Chemistry Principles

Rasheed Ahmed 03334277385 D Level Chem

Topic:

Class 10-C

Category:

WorkSheets

Acids, Bases & Salts - McQs

Substance X dissolves in water to form a colourless solution. This solution reacts with aqueous lead (II) nitrate in the presence of dilute nitric acid to give a yellow precipitate.

What is substance X?

- A calcium iodide
- B copper(II) chloride
- C iron(II) iodide
- D sodium chloride
- A student mixed together aqueous solutions of Y and Z. A white precipitate formed.

Which could not be solutions Y and Z?

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

	solution Y	solution Z
A	hydrochloric acid	silver nitrate
В	hydrochloric acid	sodium nitrate
C	sodium chloride	lead(II) nitrate
D	sodium chloride	silver nitrate

in minute with the second

3. The tests below were carried out on a solution containing ions of the metal X.

test	observation
add sodium chloride solution	no change
add sodium sulfate solution	no change
add sodium hydroxide solution	a precipitate was formed, soluble in excess of the hydroxide

What is metal X?

- A calcium
- B iron
- C lead
- D zinc

0333-4277385

Acid, Base and Salt - MCQs, (O - Level)

4. Which is an anion that is present in the solution formed when an excess of dilute hydro Ra acid is acced to calcium carbonate?

- A Ca24
- B CI
- C CO2-
- D H

5. Which pair of compounds could be used in the preparation of calcium sulfate?

- calcium carbonate and sodium sulfate
- calcium chloride and ammonium sulfate В
- calcium hydroxide and barium sulfate
- calcium nitrate and lead(II) sulfate

A metal reacts with dilute hydrochloric acid to produce a gas.

What is used to identify this gas?

Rasheed Ahm

- a glowing splint
- a lighted splint В
- C damp blue litmus paper
- D limewater

O/A Level Chem

0333-4277

7. Titration of an acid against a base is a method often used in the preparation of salts.

Which properties of the acid, the base and the salt are required if this method is to be u

	acid	base	salt
Α	insoluble	insoluble	insoluble
В	soluble	insoluble	insoluble
С	soluble	soluble	insoluble
D	soluble	soluble	soluble

8. Which reagent could be used to distinguish between dilute nitric acid and dilute hydrol acid?

- aqueous barlum chloride
- aqueous silver nitrate
- aqueous sodium hydroxide
- copper(II) carbonate

0333-4277385

Acid, Base and Salt - MCQs (O - Level)

Rasheed Ah

Acid, Base and Salt – MCQs (O – Level)

Α

С

D

0333-4277385

an acid

an alkali

a salt

a reducing agent

Scanned by CamScanner

14. A coin is analysed by dissolving it in nitric acid. To the resulting solution an excess of aqua ammonia is added and the mixture is filtered.

A brown precipitate remains in the filter paper and a deep blue solution is obtained as the filts

Which metals does the coin contain?

- aluminium and copper
- copper and iron
- iron and lead C
- lead and zinc D
- 15. Which metal has a soluble carbonate, chloride and sulfate?
 - barium Α

Rasheed Ahmed

calcium В

O/A Level Chemistry

C copper

0333-4277385

potassium D

16. Sodium hydroxide solution was added to dilute hydrochloric acid. The pH of the solution in flask was measured at intervals until no further change of pH took place.

What would be the pH change in this reaction?

- decrease to 1
- decrease to 7 В
- C increase to 7
- increase to 12 D

0333-4277385

Acid, Base and Salt - MCQs (O - Level)

Rasheed Ahmi

17. Solid Y is insoluble in water. It gives off a gas when heated and also when reacted with dilute sulfuric acid.

What is Y?

- A copper(II) carbonate
- B sodium carbonate
- C sodium nitrate
- D zinc oxide
- 18. Which gas reacts with sulfuric acid to form a fertiliser?
 - A ammonia, NH₃

Rasheed Ahmed

- B carbon dioxide, CO₂
- C hydrogen, H₂
- D nitrogen, N₂

O/A Level Chemistry

0333-4277385

- 19. Carbon dioxide and carbon monoxide are both
 - A absorbed by sodium hydroxide.
 - B colourless.
 - C inflammable in air.
 - D lighter than air.
- 20. Solution X contains a simple salt.

The table shows the results of some tests on solution X.

test	observation	
addition of aqueous sodium hydroxide	green precipitate forms	
addition of acidified barium nitrate	white precipitate forms	

What is the name of the salt in solution X?

- A iron(II) chloride
- B iron(III) chloride
- C iron(II) sulphate
- D iron(III) sulphate

0333-4277385

Acid, Base and Salt – MCQs (O – Level)

O/A Level Chemistry

Rasheed Ahmed

21. Which element will burn in oxygen to form an acidic oxide?

- calcium Α
- carbon В
- C iron
- magnesium
- 22. Different solids were added to separate portions of warm dilute sulphuric acid.

For which solid is the observation correct?

	solid	solid observation	
A	ammonium sulphate	alkaline gas produced	
В	copper	gas evolved ignited with a pop	
С	magnesium oxide	solid dissolved with no effervescence	
D	zinc carbonate	gas evolved relights glowing splint	

23. One mole of compound X gives three moles of ions in aqueous solution. X reads with ammoni carbonate to give an acidic gas:

What is compound X?

calcium hydroxide

Rasheed Ahmed

ethanoic acid

O/A Level Chemistry

sodium hydroxide

0333-4277385

- D sulphuric acid
- 24. What is the function of silica, SiO₂, in the equation shown below?

- a basic oxide
- a reducing agent
- an acidic oxide
- an oxidising agent D

0333-4277385

Acid, Base and Salt – MCQs (O – Level)

25. A student tested a solution by adding aqueous sodium hydroxide. A precipitate was not seen Rasheed Ahmed because the reagent was added too quickly.

What could not have been present in the solution?

- A Al
- B Ca2+
- C NH4*
- D Zn²⁺

26. Which equation describes the most suitable reaction for making lead sulphate?

- + H₂SO₄ → PbSO₄ + H₂ Pb Α
- B PbCO₃ + H_2SO_4 \rightarrow PbSO₄ + CO_2 + H_2O
- $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 + 2HNO_3$
- $Pb(OH)_2 + H_2SO_4 \rightarrow PbSO_4 + 2H_2O$

27. Which equation represents the reaction between hydrochloric acid and sodium hydroxide?

- A CI-+ Na* NaCI
- B 2H+O2- → H2O
- C 102+H2 → H2O
- D H⁺ + OH⁻ → H₂O

tiu

d

15

28. The following statements about dilute sulphuric acid are all correct.

- A white precipitate is formed when aqueous barium chloride is added.
- The solution turns anhydrous copper(II) sulphate from white to blue.
- Addition of Universal indicator shows that the solution has a pH value of less than 7.0.
- The solution reacts with copper(II) oxide, forming a blue solution.

Which two statements confirm the acidic nature of the solution?

- A 1 and 2
- B 1 and 3
- C 2 and 4
- 3 and 4 D

29. Ammonia gas is produced when solid ammonium chloride is heated with

- A calcium hydroxide.
- В calcium sulphate.
- C hydrochloric acid.
- magnesium nitrate.

0333-4277385

Acid, Base and Salt - MCQs (O - Level)

Acid, Base & Salt - Theory

1.	Phosphine, PH ₃ , is a gas which has a smell of warmed with aqueous sodium hydroxide.	garfic. It is formed when white phosphorus i	S

$$4P + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_3$$

(a) Draw a 'dot-and-cross' diagram for phosphine.

Show only the outer electrons.

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

[1]

(b) (i) Calculate the maximum mass of phosphine formed when 1.86g of phosphorus reacts with excess aqueous sodium hydroxide.

(ii) Calculate the volume of phosphine formed from 1.86g of phosphorus at r.t.p.

[1]

[2]

(c) Phosphine decomposes into its elements on warming. Write an equation for this reaction.

....[2

0333-4277385

Acid, Base & Salt Theory (O-Level)

	and the second
parhood	Ahmad

O/A Level Chemistry

0.2	22		3-	,-,	-	0	•
03	၁၁	-6	121	•	5	a	Э

 Methylamine, CH₃NH₂, is a base which has similar properties to ammonia. When methylamine dissolves in water, the following equilibrium is set up.

CH ₃ NH ₂	÷	H20	=	CH ₃ NH ₃ +	+	OH-

(a) Explain why methylamine behaves as a base in this reaction.

(b) When aqueous methylamine is added to aqueous iron(III) chloride, a red-brown precipitate is observed. Suggest what you would observe when aqueous methylamine is added to aqueous

iron(II) chloride.

.....[

(c) Methylamine is a gas. Calculate the volume occupied by 6.2g of methylamine at room temperature and pressure.

[2]

(d) Methylamine is made by reacting methanol with excess ammonia under pressure in the presence of a catalyst.

$$\text{CH}_3\text{OH} + \text{NH}_3 \rightarrow \text{CH}_3\text{NH}_2 + \text{H}_2\text{O}$$

(i) Define the term catalyst.

_____[1]

(ii) Calculate the theoretical yield of methylamine that can be obtained from 240 kg of methanol.

[2]

[Total: 7]

Acid, Base & Salt Theory (O-Level)

Rasheed Ahmed

0333-4277385

Rasheed Ahmed

4. The table shows the concentration of different ions found in a sample of aqueous industral waste.

ion	concentration in mol/dm ³
Ca ²⁺	0.125
H ⁺	2.30
K ⁺	0.234
NO ₃ -	3.68
Fe ²⁺	0.450

Rasheed Ahmed

O/A Level Chemistry 0333-4277385

Use	the information in the table to answer the following questions.	
(a)	Write the formula of one salt that could be obtained from the sample.	.[.
(b)	Is the sample of aqueous waste acidic, neutral or alkaline? Explain your answer.	
(c)	Calculate the mass of dissolved iron(II) ions, Fe ²⁺ , in 25dm ³ of the aqueous waste.	
	mass of iron(II) ions = g	
(d)	Excess aqueous sodium hydroxide is added, a small volume at a time, to a samp the aqueous industrial waste. Describe and explain what you would observe.	ile
e Sapar Pr		
5		esere
0333-42	77385 Acid, Base & Salt Theory (O-Level) Rasheed Ah	mel

	ed Ahmed	O/A Level Chemistry	0333-4277385
. (e)	Describe now you w	yould confirm the presence of dissolved nitra	ate ions in the sample.
			[21
			[4]
			[Total: 11]
5. Feri	ilisers supply the e	ssential elements, nitrogen, phosphorus	and potassium for plan
nitra	ate, KNO ₃ .	ns 500g of ammonium sulfate, $(NH_4)_2SO_4$, and 500 g of potassiun
(2)	Calculate the news		
(4)	Odiculate the percei	ntage by mass of nitrogen in the bag of ferf	iliser.
		R	asheed Ahmed
			- The state of the
			D/A Level Chemistry
			0333 437755
	1.		0333-4277385
			[4
(b) Pot	assium sulfate is a s	soluble salt.	
Out	line the preparation	of a pure, dry sample of potassium suli	ate starting from diluto
Sulf	unc acid.		are, starting nom unde

			•••••••••••••
			••••••
The state of the			the state of the s
******			[3]
	•		•
0333-42	77385	Acid, Base & Salt Theory (O-Level)	Rasheed Ahmed
		, , , = =====,	Masheeu Allineu

11

- 6. Phosphorus(V) oxide, P₂O₅, absorbs water from the air to form meta-phosphoric acid HPO2.
 - Write an equation for this reaction.

(ii) On addition of more water, phosphoric acid is formed. Phosphoric acid has typical acidic properties. What would you observe when aqueous phosphoric acid is added to

aqueous sodium carbonate,

blue litmus paper?

Part of the chain structure of antimony sulphide is shown below.

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

Deduce the empirical formula of antimony sulphide.

7. Cement is made by heating clay with crushed calcium carbonate. During this process, the calcium carbonate is first converted to calcium oxide.

$$CaCO_3 \rightarrow CaO + CO_2$$

- (a) (i) What name is given to this type of chemical reaction?
 - Suggest why calcium oxide is used to neutralise acidic soils.

0333-4277385

Acid, Base & Salt Theory (O-Level)

- (b) Concrete is made from cement, sand and water. When set, concrete is slightly porous. When rain water soaks through concrete, some of the uncombined calcium oxide dissolves to form calcium hydroxide.
 - Write an equation for this reaction.

[1]

The aqueous calcium hydroxide in wet concrete reacts with carbon dioxide in the (ii)

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

The diagram shows the pH at various points inside a cracked concrete beam.

Describe and explain the change in pH from the surface to the centre of the beam.

25.0 cm³ of an aqueous solution of calcium hydroxide is exactly neutralised by (iii) 18.0 cm³ of 0.040 mol/dm³ hydrochloric acid.

$$Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + 2H_2O$$

Calculate the concentration, in mol/dm3, of the aqueous calcium hydroxide.

[3]

Acid, Base & Salt Theory (O-Level)

O/A Level Chemistry

0333-4277385

Rasi	nee	ed A	hmed O/A Level Chemistry	0222 427700-	
(6	c)	Th	ne farmer adds calcium hydroxide, Ca(OH) ₂ , and ammonium sulphate, e soil.	(NH ₄) ₂ SO ₄ , to	
		Ex	plain the purpose of using each compound.		
		• • • •			
		••••		[3]	
(d)	Αr	eaction occurs between calcium hydroxide and ammonium sulphate.		
		(i)	Complete the equation for this reaction.		
			$Ca(OH)_2 + (NH_4)_2SO_4 \rightarrow \dots + \dots + \dots + \dots$	2H ₂ O	
		(ii)	Explain why the farmer should not have added these two compounds the same time.	to the soil at	
				[3]	
10. B	æ	ss is	s an alloy containing zinc and copper.	otal: 8 marksì	
(a)	Εĸ	plain why the physical properties of brass are different from those of zinc a	nd capper. [1]	
(b)	Αs	sample of powdered brass is added to excess dilute nitric acid.		
		The	e mixture is heated gently until all the brass reacts.		
	•	The	e resulting solution, A , contains aqueous copper(II) ions and aqueous zinc	ions.	
		(i)	Suggest the colour of solution A.	[1]	
	((11)	Describe and explain, with the aid of equations, what happens when a hydroxide is slowly added to solution A.	queous sodium [5]	
(c)) ;	Ano	other sample of powdered brass is added to excess dilute hydrochloric acid	i.	
	f	The	mixture is heated and an aqueous solution of a compound B together wined.	th a solid C are	
	((i)	Name both B and C.	[2]	in.
	(ī	ii)	Write an ionic equation for this reaction.	[1]	
			Rasheed Ahmed (0333-4277385)		

0333-4277385

Acid, Base & Salt Theory (O-Level)

Molar Calculations (MCQs)

1. Wh	nat is the cond com ³ of solution	entra n?	ition o	of iodine	moled	cules,	I ₂ , in a	a solutio	n cont	aining	2.54 g	of iod	dine in
А	0.01 mol/dm ³	}											
В	0.02mol/dm ³	1											
С	0.04 mol/dm ³	,											
D	0.08mol/dm ³	ı											
2. Wh	nat is the mas	s of	one r	nole of o	arbor	1-12?				,			
A	0.012g	1	ВО).024g		С	1 g		D	12g			
3. Tw	o different hy	droc	arbor	ns each	conta	in the	same	percen	tage b	y mas	s of hy	/droge	en.
It fo	ollows that the	ey ha	ave th	ne same					R	asha	eed A	۵hm	ed
Α	empirical fo	rmula	a.							<u> </u>	2007	******	<u>ica</u>
В	number of is	some	ers.							0/4	A Level	Chem	istry
C.	relative mol	ecula	ar ma	SS.							0333	-4277	385
D	structural fo	rmul	a.										
4. Cald	cium reacts wit	th wa	ter as	shown.									
			C	a(s) + 2H	l ₂ O(I) -	→ Ca(OH)₂(a	q) + H ₂ ((g)				
Wha wate	at is the total are?	mass	of th	ne solutio	n that	t rema	ains wh	en 40 g	of cal	cium r	eacts v	vith 10	00 g of
A	58 g	В	74 g		С	138	g	D	140 g		*		
. Hydi	rogen reacts w	vith ox	xygen	as show	n in th	ne equ	ation b	elow.					
				2H ₂	(g) + (D ₂ (g) -	→ 2H ₂ O	(1)					
How	much gas werature?	ill re	main	if 2 dm ³	of hy	/droge	en are	reacted	with 1	i dm³	of oxy	gen at	room
Α (Odm³	В	1 dm	1 ³	С	2dm	3	D	3 dm³				
333-42	277385			Molar Ca	lculat	ions N	/ICQs (C	Level)			Rash	eed Af	imed
		64											

Rasheed Anmed
6. Which graph corresponds to the catalytic decomposition of 1 mole of hydrogen peroxical

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

7. What is the concentration of hydrogen ions in 0.05 mol/dm3 sulfuric acid?

- $A = 0.025 g/dm^3$
- B 0.05g/dm³
- C 0.10 g/dm³
- D 2.0 g/dm³

8. The equation for the reaction between copper and nitric acid is shown.

$$vCu + wHNO_3 \rightarrow xCu(NO_3)_2 + yNO + zH_2O$$

v, w, x, y and z are whole numbers.

Which values of v, w, x, y and z balance the equation?

	v	W	x	У	Z
Α	1	2	1	1	1
В	1	4	1	2	2
С	3	4.	3	2	2
D	3	8	3	2	4

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

0333-4277385

Molar Calculations MCQs (O Level)

9. Which gas contains the same number of molecules as 9 g of water?

- 2 g of hydrogen
- 14g of nitrogen
- 32g of oxygen
- 44g of carbon dioxide D

The mass of one mole of a chloride formed by a metal Y is 74.5g.

What is the formula of the chloride?

- Y,CI
- Y₂C1
- C YCI
- YCL

11. The energy diagram for the reaction between sodium hydroxide and hydrochloric acid is shown.

Which quantity of heat is liberated when 100 cm3 of 1 mol/dm3 hydrochloric acid reacts with 100 cm3 of 1 mol/dm3 sodium hydroxide?

- 0.54kJ
- $2.70 \, kJ$
- 5.40 kJ C
- 10.8kJ

12. When added to 20 cm3 of 0.5 M sulphuric acid, which substance would give a neutral solution?

20 cm³ of 0.5 M sodium hydroxide A

Rasheed Ahmed

10cm³ of 0.5 M sodium hydroxide

O/A Level Chemistry

40 cm³ of 1.0 M sodium hydroxide

20 cm³ of 1.0 M sodium hydroxide

0333-4277385

13. Carbon dioxide can be obtained as shown in the equation.

 $3Na_2CO_3 + 2H_3PO_4 \rightarrow 2Na_3PO_4 + 3CO_2 + 3H_2O_3$

How many moles of phosphoric acid, H₃PO₄, are needed to produce 1.5 mol of carbon dioxide?⁴

1 0333-4277385

1

1.5 Molar Calculations MCQs (O Level)

2.0 D

O/A Level Chemistry

14. The fertiliser ammonium nitrate (NH₄NO₃, $M_{\rm f}$ = 80) is manufactured from ammonia (NH₃, $M_{\rm f}$ = 10) by a two-stage process.

Stage 1 NH₃ +
$$2O_2 \rightarrow HNO_3 + H_2O$$

What is the maximum mass of fertiliser that can be made if only 17 tonnes of ammonia available?

- A 34 tonnes
- B 40 tonnes
- C 80 tonnes
- D 97 tonnes
- 15. One mole of a sample of hydrated sodium sulphide contains 162 g of water of crystallisation

What is the correct formula of this compound?

- A Na₂S.3H₂O B Na₂S.5H₂O C Na₂S.7H₂O D Na₂S.9H₂O

- 16. The equation represents the action of dilute nitric acid on copper.

$$xCu + yHNO_3 \rightarrow xCu(NO_3)_2 + 4H_2O + 2NO$$

.What are the values of x and y?

A x = 1, y = 4

Rasheed Ahmed

B x = 1, y = 8

O/A Level Chemistry

C x = 3, y = 4

0333-4277385

- D x = 3, y = 8
- 17. All ammonium salts on heating with sodium hydroxide produce ammonia gas.

From which ammonium salt can the greatest mass of ammonia be obtained?

- A 0.5 mol (NH₄)₃PO₄
- B 0.5 mol (NH₄)₂SO₄
- C 1.0 mol NH₄Cł
- D 1.0 mol NH₄NO₃
- 18. A 10 cm³ sample of a gaseous hydrocarbon is completely burnt in oxygen. The total volume of products is 70 cm³.

Which equation represents the combustion of the hydrocarbon?

0333-4277385

Molar Calculations MCQs (O Level)

	Ra	ashee A	d Ahmed CH4(g) + 20	O ₂ (g) –		O/A Level 2H₂O(g		istry			0333-4277385	
457		В	$C_2H_4(g) + 3$	O ₂ (g) -	→ 2CO ₂ (g)	+ 2H ₂ O	(g)					
Holy		С	$C_3H_8(g) + 5$	O ₂ (g) -	→ 3CO ₂ (g)	+ 4H ₂ C	(g)					
		D	2C ₂ H ₆ (g) +	70 ₂ (g)	→ 4CO ₂ (g	g) + 6H ₂	O(g)					
5-			element X form						of >	K₂ com	mbines with one volume of	
3UUD		What is the formula for the hydride of X?										
		Α	HX	В	HX_2	С	H_2X		D	H_2X_2		
stallisa	20	. Whi	ich substance	has the	e highest pe	ercentage	by ma	ess of nitr	ogen	1?		
		Α	NH ₄ NO ₃	$M_{\rm r} = 80$)					Ra	asheed Ahmed	
		В	$(NH_4)_2SO_4$	$M_{\rm r} = 13$	32						O/A Level Chemistry	
		С	CO(NH ₂) ₂	$M_{\rm r} = 60$) .							,
		D	(NH ₄) ₃ PO ₄	$M_r = 12$	19						0333-4277385	
	21	In a	an experime	nt 264g	of stronti	um reac	ts with	213 g o	f chi	lorine.		
ım	6	Wh	at is the for	nula of	strontium	chloride	?					
11()		Α	SrCI	В	$SrCI_2$		CS	SrC I3		D	Sr₂CI	
hemi	22.	. 2 dr	m³ of aqueous	sodiur	n hydroxide	of conc	entrati	on 5 mol/	dm³	were i	required for an experiment.	
12773	}	Hov	v many moles	of sod	ium hydrox	lde were	neede	d to mak	e up	this so	solution?	
ž,		Α	2.5	В	5	С	7		D	10		
?	23.	An 8	3 g sample of	oxygen	atoms con	tains the	same	number	of at	oms a	as 16 g of element X.	
		Wha	at is the relati	ve atom	nic mass, A	, of X?						
		A	4	В	8	С	16	, was	D	32		
4	24.		at is the ratio	of the v	olume of 2	g of hydr	ogen t	the volu	ıme ı	of 16g	g of methane, both volumes	
		Α	1 to 1	В	1 to 2	C	.1 to 8		D	2 to 1	1 Rasheed Ahmed	
volta	033	3-42	77385	•	Molar C	alculatio	ns IVIC	Qs (O Lev	ei)		nasneeu Anmeu	

25. What is the mass of aluminium in 204 g of aluminium oxide, $A\mathit{l}_2O_3$? Rasheed Ahmed

A 26g

B 27 g

C 54 g

D 108 g

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

Molar Calculations (Theory)

$$4P + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$$

(a) Draw a 'dot-and-cross' diagram for phosphine.

Show only the outer electrons.

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

[1]

(b) (i) Calculate the maximum mass of phosphine formed when 1.86g of phosphorus reacts with excess aqueous sodium hydroxide.

[2]

(ii) Calculate the volume of phosphine formed from 1.86g of phosphorus at r.t.p.

[1]

(c) Phosphine decomposes into its elements on warming. Write an equation for this reaction.

)333-4277385 Molar Calculations Theory (O Level)

 Analysis of 21.25g of gallic acid showed that it contained 10.50g of carbon, 0.75g of hydrogen and 10.00g of oxygen.

Show that the empirical formula of gallic acid is C7H6O5.

8 1

3. Analysis of a compound Z obtained from the planet Mars showed Z has the following:

element	percentage by mass
potassium	39.4
iron	28.3
oxygen	32.3

03	33-42	773	Molar Calculations Theory (O Level)	Rasheed Ahmęd	1]
					•••
			Explain your answer.		
	(i	iii)	Which reagent, Fe ₂ O ₃ or KOH, is in excess in this reaction?		. 1
0.5	((ii)	Calculate the amount, in moles, of KOH used.		2
tota					
		(i)	Calculate the amount, in moles, of Fe ₂ O ₃ used.		
			.00 g sample of Fe ₂ O ₃ is added to 20.0 cm ³ of 4.00 mol dm ⁻³ KOH		
N Parkey,			$Fe_2O_3 + 3Cl_2 + 10KOH \rightarrow 2K_2FeO_4 + 6KCl + 5H_2O$	1.	
	(b)	K ₂ F chlo	$^{5}eO_{4}$ can be prepared in the laboratory by the reaction between iroprine, Cl_{2} , and potassium hydroxide, KOH.	n(III) oxide, Fe ₂ 0	⊃ ₃
				••••••	[2
**					
M		•••••			
4					•••
	(a)	Sni	ow that the empirical formula of Z is $K_2 \text{FeO}_A$.		

O/A Level Chemistry O/A Level Chemistry One of the reactions in the manufacture of nitric acid involves the oxidation of ammonia. The reaction is exothermic.
$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$ $\Delta H = -909 \text{ kJ mol}^{-1}$
) Using the information that one mole contains 6.02 x 10 ²³ particles, calculate the number of electrons in one mole of NO molecules.
[1]
A factory uses 100 tonnes of ammonia each day to produce 160 tonnes of nitrogen monoxide, NO.
Calculate the percentage yield of nitrogen monoxide.
Rasheed Ahmed
O/A Level Chemistry
0333-4277385
percentage yield = % [3]
5. A student was given some hydrated iron(II) sulfate crystals, FeSO ₄ .xH ₂ O. They were placed in a previously weighed crucible which was reweighed.
Mass of crucible + iron(II) sulfate crystals = 10.45g Mass of crucible = 6.60g
(a) Calculate the mass of iron(II) sulfate crystals used in the experiment.
g [1
(b) The crystals were gently heated until no more water vapour was given off.
(i) What word describes the iron(II) sulfate now that it has lost all of its water of crystallisation?
[1
0333-4277385 Molar Calculations Theory (O Level) Rasheed Ahmed

(iii) how many moles of water were lost during heating.

Molar Calculations Theory (O Level)

(e) The value of x in the formula FeSO₄.xH₂O can be found using the following formula.

$$x = \frac{\text{answer to } (d)(ii)}{\text{answer to } (d)(i)}$$

Calculate the value of x and hence write the formula of hydrated iron(II) sulfate.

x =	[1]
The formula of hydrated iron(II) sulfate is	[1]
	[Total: 9]

6. A small amount of xenon is present in the air. Several compounds of xenon have been made in recent years.

A compound of xenon contained 9.825g of xenon, 1.200g of oxygen and 5.700g of fluorine.

Determine the empirical formula of this compound.

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

7. Methylamine, CH₃NH₂, is a base which has similar properties to ammonia. When methylamine dissolves in water, the following equilibrium is set up.

$$CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^-$$

- (a) Explain why methylamine behaves as a base in this reaction.
- (b) When aqueous methylamine is added to aqueous iron(III) chloride, a red-brown

0333-4277385

Molar Calculations Theory (O Level)

the state of the s	O/A Level Chemistry you would observe when aqueous methylamine is adde	
		(4)
) Methylamine is a temperature and	a gas. Calculate the volume occupied by 6.2g of methyla pressure. Rasheed Ahmed	mine at room
	O/A Level Chemistry	
	0333-4277385	
n Maria da mala a da		[2]
) Methylamine is r presence of a ca	made by reacting methanol with excess ammonia under pr atalyst.	ressure in the
C	$CH_3OH + NH_3 \rightarrow CH_3NH_2 + H_2O$	
	erm catalyst.	
	ne theoretical yield of methylamine that can be obtained fr	
		(2)
A solution of fumar	ric acid was titrated against aqueous sodium hydroxide.	[2] [Total: 7]
A solution of fumar HO ₂ CCH=CHC0	ric acid was titrated against aqueous sodium hydroxide. O ₂ H + 2NaOH → NaO ₂ CCH=CHCO ₂ Na + 2H ₂ O	[Total; 7]
HO ₂ CCH=CHC0 18.0 cm ³ of 0.200 in furnaric acid solution	$O_2H + 2NaOH \rightarrow NaO_2CCH=CHCO_2Na + 2H_2O_2Na)$	[Total: 7]
HO ₂ CCH=CHC0 8.0 cm ³ of 0.200 in the control of	$O_2H + 2NaOH \rightarrow NaO_2CCH=CHCO_2Na + 2H_2Omol/dm^3$ sodium hydroxide were required to neutralise	[Total: 7]
HO ₂ CCH=CHC0 18.0 cm ³ of 0.200 i lumaric acid solution	O ₂ H + 2NaOH → NaO ₂ CCH=CHCO ₂ Na + 2H ₂ O mol/dm ³ sodium hydroxide were required to neutralise on. entration, in mol/dm ³ , of the fumaric acid solution. Molar Calculations Theory (0.1 and the contraction)	[Total: 7]

9 /	A student	produced	zinc	oxide b	у	heating	zinc	nitrate.
-----	-----------	----------	------	---------	---	---------	------	----------

Some zinc nitrate was placed in a previously weighed crucible which was then reweighed

(a) Calculate the mass of zinc nitrate.

The solid zinc nitrate was heated in a fume cupboard. The following reaction took place.

$$2Zn(NO_3)_2(s) \rightarrow 2ZnO(s) + 4NO_2(g) + O_2(g)$$

b) Using your answer to (a) calculate the number of moles of zinc nitrate used in the reaction.

[A_r: Zn, 65; N,14; O,16]

..... moles [1]

c) Using the equation for the reaction and your answer to (d) calculate the total volume of each gas produced from the reaction.

[1 mole of a gas occupies a volume of 24 dm³ at room temperature and pressure.]

volume of NO₂ cm³

volume of O₂ cm³

0333-4277385 Molar Calculations Theory (O Level)

10. Octane burns in air.

$$\rm 2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$$

A petrol-powered motor car travels at a constant speed of 80 km/h. For every kilometre travelled 108g of carbon dioxide are formed.

When the motor car travels 100 km calculate

(i) the mass of carbon dioxide emitted by the car,

- [1]
- (ii) the mass of petrol burned by the car assuming that petrol is 100% octane.
- [4]

11. Ethanol can also be manufactured from glucose, $C_6H_{12}O_6$.

$$\mathrm{C_6H_{12}O_6} \rightarrow \mathrm{2CO_2} + \mathrm{2C_2H_5OH}.$$

'A solution containing 18 kg of glucose makes only 0.92 kg of ethanol. Calculate the percentage yield of ethanol.

- [3]
- 12. A bag of fertiliser contains 500 g of ammonium sulfate, $(NH_4)_2SO_4$, and 500 g of potassium
 - (a) Calculate the percentage by mass of nitrogen in the bag of fertiliser.

[4]

1333-4277385

13

9

Molar Calculations Theory (O Level)

13. 25.0 cm³ of an aqueous solution of calcium hydroxide is exactly neutralised by 18.0 cm³ of 0.040 mol/dm³ hydrochloric acid.

$$Ca(OH)_2 + 2HC1 \rightarrow CaCl_2 + 2H_2O$$

Calculate the concentration, in mol/dm3, of the aqueous calcium hydroxide.

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

concentration =mol/dm3 [3]

- 14. Analysis of 10.0g of carboxylic acid X shows that it contains 2.67g carbon, 0.220g hydrogs and 7.11 g oxygen.
 - (i) Deduce the empirical formula of X.
 - (ii) The relative molecular mass of X is 90. Deduce the molecular formula of X.

0333-4277385

Molar Calculations Theory (O Level)

- - (b) Magnesium ribbon reacts with hydrochloric acid as shown in the equation.

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

A 0.24g sample of magnesium ribbon is added to 5.0 cm3 of 2.0 mol/dm3 hydrochloric acid.

- (i) Which reactant, magnesium or hydrochloric acid, is in excess? Use calculations to explain your answer.
- (ii) Calculate the maximum mass of magnesium chloride that can be formed in this reaction. Rasheed Ahmed

0333-4277385

1 13

Molar Calculations Theory (O Level)

A 1.2 g sample of powdered brass was analysed by reaction with excess dilute sulphys.

The zinc reacts as shown in the equation to form 0.072 dm3 of hydrogen measured at room temperature and pressure.

$$Zn + 2H^+ \rightarrow Zn^{2+} + H_2$$

- Suggest why brass was used in a powdered rather than lump form.
- (ii) Calculate the mass of zinc in the sample of brass.
- (iii) Calculate the percentage of zinc in the sample of brass.
- A solution of tartaric acid was titrated with 0.100 mol/dm³ potassium hydroxide.

$$C_2H_2(OH)_2(CO_2H)_2 + 2KOH \rightarrow C_2H_2(OH)_2(CO_2K)_2 + 2H_2O$$

tartaric acid

It required 6.00 cm3 of the potassium hydroxide solution to neutralise 20.0 cm3 of tartaric acid. Calculate the concentration, in mol/dm3, of the tartaric acid solution.

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

	mol/dm	3 [0]
	molitam	- 1.41
 		[-]

Tartaric acid is purified by recrystallisation.

On analysis, 8.00g of impure tartaric acid was found to contain 7.40g of pure tartaric acid. Calculate the percentage purity of the impure tartaric acid.

Molar Calculations Theory (O Level)

- 19. Carbon monoxide reacts with nickel to form a compound containing nickel, carbon and oxygen only. Analysis of 5.70 g of this compound showed that it contained 1.97 g nickel, 1.60 g carbon and 2.13 g oxygen.
 - Determine the empirical formula of this compound."

[3]

20. Magnesium reacts with propanoic acid to form magnesium propanoate and hydrogen.

$$Mg + 2C_2H_5CO_2H \rightarrow (C_2H_5CO_2)_2Mg + H_2$$

A student added 4.80g of magnesium to 30.0g of propanoic acid.

(i) Which one of these reactants, magnesium or propanoic acid, is in excess? Explain your answer.

[2]

(ii) Calculate both the number of moles of hydrogen and the volume of hydrogen formed at r.t.p.

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

0333-4277385

Molar Calculations Theory (O Level)

Energy Changes (MCQs)

1. The energy profile for the forward direction of a reversible reaction is shown.

Which row correctly shows the sign of both the activation energy and the type of the enthalpy change for the reverse reaction?

		sign of activation energy	type of enthalpy change			
	А	negative	endothermic			
-	В	negative	exothermic			
Action or service	С	positive	endothermic			
-	D.	positive	exothermic			

2. The burning of hydrogen is an exothermic reaction.

Which statement explains this?

- A More bonds are broken than are formed.
- B More bonds are formed than are broken.
- C Overall, the bonds broken are stronger than those formed.
- D Overall, the bonds formed are stronger than those broken.
- 3. In which process is energy released?
 - A electrolysis of water to form hydrogen and oxygen
 - B forming a hydrogen molecule from two hydrogen atoms
 - C fractional distillation of crude oil
- D photosynthesis

WSO-Energy Changes MCQs (O Level)

Rasheed Ahmed

4. The diagram shows the reaction pathway for a given reaction without the use of a catalog.

Which information correctly describes the effect of the catalyst on the activation energy a enthalpy change for the reaction?

	activation energy	enthalpy_change
A	decrease	decrease
В	increase	no change
С	increase	increase
D	decrease	no change

5. The energy profile diagram for the reaction between hydrogen and chlorine is shown.

What information about this reaction does the diagram show?

	type of reaction	sign of enthalpy change, ΔH
A	endofhermic	negative
В	endothermic	positive
C	exothermic	• negative
D	exothermic	, positive
0333-4	277385	WICO F

WSO-Energy Changes MCQs (O Level)

ray profile diagrams show how adding a substance X to a reaction mixture changes the

Which change occurs when X is added to the reaction mixture?

- The rate of reaction decreases.
- The rate of reaction increases.
- The reaction becomes less exothermic.
- The reaction becomes more exothermic.
- The energy profile diagram below is for a reaction P + Q → R + S.

Which statement is correct?

- The activation energy of the reaction is $(H_3 H_1)$.
- B The activation energy of the reaction is $(H_3 H_2)$.
- ΔH is $(H_1 H_2)$.
- D ΔH is (H1 H3).

0333-4277385

WSO-Energy Changes MCQs (O Level)

8. The table shows the energy released by the complete combustion of some compounds u

		A CONTRACTOR OF THE PROPERTY OF THE PARTY OF	- it is the desired or	
	formula	M.	AH in kJ/mol	
compound		16	-880	
methane	GH ₄	10,	-1380	
ethanol	C ₂ H ₅ OH	46	-1300	
	CaHa	44	-2200	
propane	C31.18	100	-4800	
bentane	Cottie	100	1000	

Which fuel produces the most energy when 1 g of the compound is completely burned?

- ethanol
- heptane
- methane
- propane
- 9. The diagram shows the reaction pathway for a reaction without a catalyst.

Which diagram shows the pathway resulting from the addition of a catalyst to the reaction?

0333-4277385

WSO-Energy Changes MCQs (O Level)

gasheed Ahmed

O/A Level Chemistry

0333-4277385

10. The diagram shows an energy profile diagram for a chemical reaction.

Which energy change is the activation energy for the catalysed reaction?

11. The formation of hydrogen iodide from hydrogen and iodine is an endothermic reaction

$$H-H$$
 + $I-I$ \rightarrow $H-I$ + $H-I$

What may be deduced from this information?

- The number of bonds broken is greater than the number of bonds formed.
- The formation of H I bonds absorbs energy. B
- The products possess less energy than the reactants. C
- The total energy change in bond formation is less than that in bond breaking. D
- 2. The energy diagram for the reaction between sodium hydroxide and hydrochloric acid is shown.

Which quantity of heat is liberated when 100 cm³ of 1 mol/dm³ hydrochloric acid reacts with

100cm3 of 1 moi/dm3 sodium hydroxide?

A 0.54kJ

2.70 kJ C 5.40 kJ D WSO-Energy Changes MCQs (O Level)

10.8kJ

- 13. Which of the following is an endothermic reaction?
 - A the combustion of ethanol in air
 - B the formation of a carbohydrate and oxygen from carbon dioxide and water
 - C the oxidation of carbon to carbon dioxide
 - D the reaction between hydrogen and oxygen
- 14. The energy diagram for the reaction between sodium hydroxide and hydrochloric acid is show

What can be deduced from the diagram?

- A Heat is needed to start the reaction.
- B The products contain less energy than the reactants.
- C The reaction is rapid.
- D The OHT ions have more energy than the H* ions.
- 15. The equation below shows an exothermic reaction.

$$\text{Mg(s)} + 2\text{HCI(aq)} \rightarrow \text{MgCI}_2(\text{aq}) + \text{H}_2(\text{g})$$

Which statement about this exothermic reaction is not correct?

- A Magnesium chloride is soluble in water.
- B Magnesium is above hydrogen in the reactivity series.
- One mole of magnesium produces one mole of hydrogen gas.
- The total energy of the products is greater than that of the reactants.
- 16. The reaction $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ is exothermic because
 - A more bonds are broken than are formed.
 - B more bonds are formed than are broken.
 - · C the energy needed to break the bonds is greater than that released on forming new bond
- D the energy needed to break the bonds is less than that released on forming new bonds

 WSO-Energy Changes MCQs (O Level)

 Rasheed Ahmed

17. Which of the following changes is endothermic?

- $H(g) + CI(g) \rightarrow HCI(g)$
- $H_2O(g) \rightarrow 2H(g) + O(g)$
- $H_2O(1) \rightarrow H_2O(s)$
- $2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

Energy Changes (Theory)

 Several small pieces of magnesium are placed on a block of solid carbon dioxide. The solid carbon dioxide is at a temperature of -60 °C. The magnesium is ignited and another block of solid carbon dioxide is immediately placed on top.

A vigorous reaction is observed.

$$2Mg + CO_2 \rightarrow 2MgO + C$$

Suggest what could be seen as the reaction proceeds to completion.
[2]
Why is another block of solid carbon dioxide placed above the burning magnesium?
[1]
State one factor in the experiment which slows down the reaction.
[1]
When 2 moles of magnesium react with one mole of carbon dioxide, 810kJ of energy
are released. Calculate the energy released when 2.0g of magnesium reacts completely with carbon dioxide.

[2]

- (e) In a second experiment 6.0 g of magnesium and 4.4 g of carbon dioxide are used Rasheed Ahmed
 - solid, magnesium or carbon dioxide is in excess? Show your working.

- (f) Explain, in terms of the energy changes taking place in both bond-making and bond breaking, why the reaction is exothermic. Total: 1
- 2. Ethyne reacts with oxygen in an exothermic reaction.

$$H-C \equiv C-H + 2\frac{1}{2}O = O \longrightarrow O H + 2\frac{1}{2}O = O \longrightarrow O H$$

(i) Explain why the combustion of ethyne is an exothermic reaction. Use ideas about the energy changes that take place during bond breaking and bond forming.

(ii) The complete combustion of one mole of ethyne releases 1410 kJ of energy. Calculate the energy released when 1000 dm³ of ethyne, measured at room temperature and pressure, is completely combusted.

3. Sulphur dioxide and nitrogen dioxide react together as shown in the equation.

$$SO_2 + NO_2 \rightarrow SO_3 + NO$$
 $\Delta H = +43 \text{ kJ/mol}$

Draw an energy profile diagram for this reaction.

Indicate both the enthalpy change and the activation energy on your diagram.

[3]

4 Oxides of nitrogen are atmospheric pollutants. Nitrogen monoxide, NO, is formed in an internal combustion engine when nitrogen and oxygen react together.

$$N_2(g) \rightarrow O_2(g) \longrightarrow 2NO(g)$$

The diagram shows the energy profile for this reaction.

0333-4277385

Energy Changes - O Level (Theory)

O/A Level Chemistry

Rasheed Ahmed

A/O Level Chemistry

progress of reaction

- (a) Identify the energy changes X and Z.
- (b) The reaction between nitrogen and oxygen is endothermic.
 - Explain how you can tell from the diagram that the reaction is endothermic.
 - (ii) Explain, using ideas about bond breaking and bond making, why the overall reactions endothermic.
- (c) The exhaust system of a motor car is fitted with a catalytic converter. When nitrogen monower passes through the converter it reacts with carbon monoxide.

$$2NO(g) + 2CO(g) \longrightarrow N_2(g) + 2CO_2(g)$$

The catalyst increases the rate of this reaction.

- Explain how the catalyst in the converter increases the rate of this reaction. (i)
- During the course of a journey 2.4 dm³ of nitrogen monoxide was produced by the angular Calculate the volume of nitrogen gas produced if all the nitrogen monoxide reacted in converter.
- (iii) In reality, only 1.0 dm³ of nitrogen was produced after the gases had passed over catalytic converter. Calculate the percentage of nitrogen monoxide that had reacted

Total: 10

Rate of Reactions (Theory)

Carbonyl chloride, $COCl_2$, is a colourless, poisonous gas formed when carbon monoxide and chlorine combine in the presence of sunlight. The forward reaction is exothermic.

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$

(a)		dict and explain how each of the following affects the position of equilication:	brium in this
	(i)	increasing the concentration of chlorine;	
			[2]
	(ii)	increasing the pressure;	
			[2]
ĸ	(iii)	increasing the temperature.	
TO			······································
			[2]
(b)		bonyl chloride reacts with ammonia to form urea, (NH ₂) ₂ CO, and bride.	ammonium
	Writ	e an equation for this reaction.	
			[2]
0333-4	27738	5 WSO - Rate of Reactions	Rasheed Ahmed

(c) Urea can be used as a fertiliser.

(i)	How do fertilisers increase crop yields?
(ii)	Urea is produced industrially by the reaction of ammonia with carbon dioxide.
	The ammonia is manufactured using the Haber process by combining the elementary nitrogen and hydrogen.
	State the essential conditions in the Haber process which are necessary in order produce a high yield of ammonia.

Total: 11

 A student measured the volume of hydrogen produced over time when small pieces of zir reacted with excess sulfuric acid.

The results are shown in the graph below.

0333-4277385

WSO - Rate of Reactions

Rasheed Ahri

WSO - Rate of Reactions

Rashee	od Ah Sulf Nan	O/A Level Chemistry O/A Level	773g [i]
(d)	The	equation shows the second stage of the Contact process. $2SO_2 + O_2 \implies 2SO_3 \Delta H = -197 \text{kJ/mol}$	
	(i)	State the meaning of the symbol ΔH .	[1]
	(ii)	Predict and explain the effect of increasing the temperature on the position equilibrium in this reaction.	ci Te
	(iii)	State the essential conditions for the reaction in the contact chamber.	.[2]
4.	H ₂ O	eous hydrogen peroxide, $H_2O_2(aq)$, is used to sterilise contact lenses. $O_2(aq)$ slowly decomposes at room temperature to make water-and oxygen. decomposition can be made faster by $O_2(aq)$ using a more concentrated solution of $O_2(aq)$, heating the $O_2(aq)$, adding an enzyme called peroxidase.	- The same of the
	(a)	Construct the equation for the decomposition of H ₂ O ₂ (aq).	
1	(b)	Explain why concentrated $H_2O_2(aq)$ decomposes faster than dilute $H_2O_2(aq)$.	

Ahmed Explain why hot H ₂ O ₂ (ac	O/A Level Chemistr	an cold H ₋ O _c (ag).	0333-427730
Explain why hot H ₂ O ₂ (at		1411 0010 11202(04)	
			•
.,			
Explain, using ideas abo the decomposition of H ₂	ut activation energy, wh O ₂ (aq) faster.	ny an enzyme such as per	oxidase make
25.0 cm ³ of H ₂ O ₂ (aq) we were kept constant.	ere used. The concentration	experiment, 0.100g of the ation and temperature of total volume of oxygen	
catalyst	time taken to collect 50 cm ³ of oxygen / s	made at the end of the reaction / cm ³	
manganese(IV) oxide	25	95	
peroxidase	10		
(i) What is the total verberoxidase was use	olume of oxygen maded as a catalyst?	e at the end of the read	tion in which
volume of oxygen =	cm ³		[1]
(ii) Describe, with the ai to collect the measu	d of a labelled diagram, red volumes of gases re	how you could carry out a ecorded in the table.	an experiment
The state of the s		and the second s	The state of the s
	WSO - Rate of Reacti		

5. One of the reactions in the manufacture of nitric acid involves the oxidation of ammonia reaction is exothermic.

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$
 $\Delta H = -909 \text{ kJ mo}-1$

(a) The reaction is carried out at a pressure of 10 atmospheres and a temperature

(i) Predict and explain the effect on the position of equilibrium if the reaction out at 10 atmospheres pressure and 700°C rather than 900°C.	IS Carri
--	----------

(ii)	Predict and explain the effect on the position of equilibrium if the reaction is carried out at 900°C and 20 atmospheres pressure rather than 10 atmospheres.

(b)	A factory uses monoxide, NO.	100 tonnes of	ammonia	each	day to	produce	160 tonnes	of nitroger
	Calculate the pe	ercentage yield	of nitroger	n mond	oxide.			

	Ahme	od O/A Level Chemistry	0333-4277385
(c)	The	monium nitrate, NH ₄ NO ₃ , is a soluble salt. salt decomposes when heated gently to form steam a	and a colourless gas X.
	(i)	Ammonium nitrate can be prepared by the reaction	between aqueous ammonia
		and dilute nitric acid. Name the experimental technique used to prepare and briefly describe how solid ammonium nitrate is solution.	aqueous ammonium nitrate obtained from the aqueous
			[2]
	(ii)	Predict the formula of gas X.	
			[Total: 10]
		and iodine react together to form hydrogen iodide in ard reaction is endothermic.	a reversible redox reaction.
		$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $\Delta H = +53 \text{ kJ } \text{ r}$	mol ⁻¹
Нус	droger	n and hydrogen iodide are colourless gases whereas io	dine gas is purple.
(a)	Wha	at is meant by the term redox reaction?	
		•••••••••••••••••••••••••••••••••••••••	
		······································	
(b)	A m 2 atn	ixture of $H_2(g)$, $I_2(g)$ and $HI(g)$ are in dynamic eqnospheres and 200 °C.	uilibrium at a pressure of
	uncn	temperature of the mixture is increased to 500°C anged. ain why the mixture becomes less purple in colour.	but the pressure remains
12/19		and the same of th	many and a sure of the sure of
	•••••		

133-4277385

WSO - Rate of Reactions

eed Ahmed

O/A Level Chemistry

that can be made from 45.3g

(c) Calculate the maximum mass of hydrogen iodide that can be made from 45.3g hydrogen.

maximum mass of hydrogen iodide =		7 3
-----------------------------------	--	-----

- (d) Hydrogen iodide is dissolved in water to make solution X.
 - X is acidified with dilute nitric acid and then aqueous lead(II) nitrate is added yellow precipitate is formed. Write an ionic equation, including state symbols, for this reaction.
 - A small volume of acidified potassium manganate(VII) is added to X. The solution (ii) changes colour to orange-brown. From this description what can you deduce about the chemical properties of X?
- 7. The diagram below shows apparatus that can be used to investigate the rate of reach between zinc and hydrochloric acid.

(a) Write the equation, including state symbols, for the reaction between zinc and hydrochloric acid.

[2]

(b) The graph shows the change in mass that occurs during the reaction between zinc and hydrochloric acid.

- Explain why the mass decreases during the course of the reaction.
- (ii) Exactly the same experiment was repeated but with a catalyst added. Sketch on the graph the results that would be obtained in the presence of the catalyst.
- (c) Explain why zinc reacts more slowly with dilute hydrochloric acid than with concentrated hydrochloric acid.

.....[2] WSO - Rate of Reactions

tasheed Ahmed O/A Level Chemistry O/A Level Chemistry	110
(d) Explain why hydrochloric acid reacts made	
zinc.	
······································	W
(e) Zinc is added to excess hydrochloric acid. Aqueous sodium hydroxide is added drop to this reaction mixture until it is in excess. Describe what you would observe.	Constant and the Constant of t

•••••••••••••••••••••••••••••••••••••••	
	L
[Total: 1	

Rasheed Ahmed

A/O Level Chemistry

0333-42277385

Rasheed Ahn

3. 1

Nitrogen & Sulphur (MCQs)

1. The diagram shows processes that take place in the manufacture of ammonia.

What are substances W and X and catalyst Y?

	W	X	Y
A	air	oil	iron
В	air	oil	vanadium(V) oxide
С	oil	air	iron
D	oil	air	vanadium(V) oxide

2. Suffur is burnt in air.

Which statement about this reaction is correct?

- A Sulfur is oxidised to sulfur trioxide.
- B The gas formed turns aqueous potassium dichromate(VI) from orange to green.
- C The reaction is reversible.
- D The reaction needs a catalyst.
- 3. Which compound will not produce ammonia when heated with ammonium sulfate?
 - A calcium oxide
 - B magnesium oxide
 - C sodium hydroxide
 - D sulfunc acid

0333-4277385

WSO - Nitrogen & Sulphur

4. These reactions are used in the manufacture of sulfuric acid.

P S +
$$O_2 \rightarrow SO_2$$

$$Q \quad 2SO_2 + O_2 \rightleftharpoons 2SO_3$$

R
$$SO_3 + H_2O \rightarrow H_2SO_4$$

Which reactions are speeded up by using a catalyst?

- A Ponly
- B Q only
- C Ronly
- D Q and R

5. Which gas reacts with sulfuric acid to form a fertiliser?

- A ammonia, NH₃
- B carbon dioxide, CO₂
- C hydrogen, H₂
- D nitrogen, N₂

In the Contact process, the sulfur trioxide formed is

- A passed into concentrated sulfuric acid.
 - B passed into dilute sulfuric acid.
 - C passed into oleum (H₂S₂O₇).
 - D passed into water.

7. In the Haber process, nitrogen and hydrogen react to form ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92kJ$

Which factor increases both the speed of reaction and the amount of ammonia produced

- A addition of a catalyst
- B decreasing the temperature
- C increasing the pressure
- D increasing the temperature
- 8. Ammonium sulphate is an important fertiliser.

During which stage in the manufacture of ammonium sulphate does a neutralisation reaction occur?

- 9. Ammonia gas is produced when solid ammonium chloride is heated with
 - .calcium hydroxide.
 - calcium sulphate. B
 - hydrochloric acid. C
 - magnesium nitrate. D
- 10. Sulphur and selenium (Se) are in the same group of the Periodic Table.

From this, we would expect selenium to form compounds having the formulae

- SeO, Na₂Se and NaSeO₄. A
- В SeO₂, Na₂Se and NaSeO₄.
- SeO₂, Na₂Se and Na₂SeO₄. С
- SeO₃, NaSe and NaSeO₄.
- 11. All ammonium salts on heating with sodium hydroxide produce ammonia gas.

From which ammonium salt can the greatest mass of ammonia be obtained?

- Α 0.5 mol (NH₄)₃PO₄
- 0.5 mol (NH₄)₂SO₄ ·B
- С 1.0 mol NH₄C1
- 1.0 mol NH₄NO₃ D
- 12. Which is a use of sulphuric acid?
 - as a bleach Α
 - in the manufacture of ammonia В
 - in the manufacture of fertilisers С
 - in the manufacture of sulphur trioxide
- 13. The diagram represents the manufacture of sulphuric acid by the Contact process.

0333-4277385

WSO - Nitrogen & Sulphur

What is used in step R?

- A vanadium(V) oxide
- B water only
- C water followed by concentrated sulphuric acid
- D concentrated sulphuric acid followed by water
- 14. The element sulphur, S, is in Group VI of the Periodic Table.

Which formula is incorrect?

- A S2-
- B S₂O₃
- C SO 4
- D SO₃
- 15. Which method would not produce ammonia gas?
 - A heating concentrated aqueous ammonia
 - B heating ammonium chloride with calcium hydroxide
 - C heating ammonium sulphate with sodium hydroxide
 - D heating ammonium sulphate with dilute hydrochloric acid
- 16. The following scheme shows four stages in the conversion of sulphur to sulphuric acid.

In which stage is a catalyst used?

17. In the Contact process for making sulphuric acid, one step involves the oxidation of sulphur dioxide as shown below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The forward reaction is exothermic.

0333-4277385

WSO - Nitrogen & Sulphur

Which change would increase the amount of sulphur trioxide produced at equilibrium?

- A increasing the temperature
- B decreasing the temperature
- c decreasing the pressure
- D adding a catalyst
- 18. The diagram shows processes that take place in the manufacture of ammonia.

What are substances W and X and catalyst Y?

	W	X	Y
A	air	oil	iron
В	air	oil	vanadium(V) oxide
С	oil	air	iron
D	oil	air	vanadium(V) oxide

29. Ammonium sulphate is an important fertiliser.

During which stage in the manufacture of ammonium sulphate does a reaction with water occur?

20. The diagram shows some of the stages in the manufacture of ammonium sulphate.

From which connecting pipe would a major leak most increase the pH value of rain?

A/O Level Chemistry

Nitrogen & Sulphur MCQs Marking Key

Question	Answer	Question	Answer
1	С	11	Α
2	В	12	С
3	D	13	D.
4	В	14	В
5	Α	15	D
6	Α	16	В
7	C	. 17	В
8	D	18	С
9	Α	19	С
10	С	20	В

Rasheed Ahmed

O/A Level Chemistry

0333-4277385

Nitrogen & Sulphur (Theory)

0333-4	2773	
(iii)	Sulfuric acid is a strong acid. What do you understand by the term strong acid?
No.		[1]
	(ií)	State one industrial use of sulfuric acid.
		[2]
	(i)	Write an equation, including state symbols, for the reaction of calcium carbonate with sulfuric acid.
(b)	The	I rain is a solution of dilute sulfuric acid. acidity in lakes can be neutralised by adding powdered calcium carbonate.
		[2]
		[2]
	(11)	equilibrium in this reaction.
	(ii)	Predict and explain the effect of increasing the temperature on the position of
	(i)	State the meaning of the symbol ΔH .
	(i)	$2SO_2 + O_2 \rightleftharpoons 2SO_3 \Delta H = -197 \text{ kJ/mol}$ State the magning of the symbol ΔH
(u)	1110	
(d)	The	equation shows the second stage of the Contact process.
		[1]
(c)	Sulfi	uric acid is manufactured by the Contact process. ne the raw materials used in the first stage of the Contact process.

	0333-427738	35
Rasheed	A/O Level Chemistry A/O Level Chemistry and potassium for pi isers supply the essential elements, nitrogen, phosphorus and potassium for pi th	ant
2. Fertil	isers supply the essential elements, nitrogen, prices the supply the essential elements, nitrogen, prices the supply the essential elements, nitrogen, prices the supply supply the essential elements, nitrogen, prices and 500 g of potassith. In the supply the essential elements, nitrogen, prices are supply the essential elements are supply to the elements are supply to the essential elements are supply to the essential elements are supply to the	um
nitrat	e, KNO ₃ .	
(a) (e, KNO ₃ . Calculate the percentage by mass of nitrogen in the bag of fertiliser.	
		[4]
	· · · · · · · · · · · · · · · · · · ·	. ,
(p)	Eutrophication occurs in river water polluted by fertilisers. Describe the principal processes involved in eutrophication.	••••
	Describe the principal p	
		••••
		[3]
3. Amr	monia is made by the Haber process using an iron catalyst.	
	$N_2 + 3H_2 \rightleftharpoons 2NH_3 \Delta H = -92 \text{kJ/mol}$	
(a)	On the same axes draw energy profile diagrams to show both the catalysed and uncatalysed reaction. Label the diagram to show	the
	the catalysed and uncatalysed reactions,	
	 the reactants and products, the enthalpy change for the reaction. 	[3]
(b)	The raw materials for the Haber process can be obtained from the air and from hydrocarb produced by the distillation of petroleum.	ons
	The state of the same of the same and the state of the same and the state of the same and the sa	[1]
	(i) Describe how bure nitrogen can be separated from other gases in the air. (ii) Describe how hydrogen can be made from hydrocarbons.	[2]
(c)	Explain how the position of equilibrium in the Haber process is altered by	

WSO – Nitrogen & Sulphur

0333-4277385

(i) an increase in pressure,

(ii) an increase in temperature.

[2] 3

[2]

(a) Although certain bacteria in the soil convert nitrogen gas into nitrates, other bacteria convert nitrogen into ammonium salts. The ionic equation for this second reaction is

$$N_2 + 8H^+ + 6e^- \rightarrow 2NH_4^+$$

Explain why this is a reduction reaction.

[1]

- (b) In the presence of hydrogen ions, a different type of bacterium converts nitrate ions into nitrogen gas and water.
 (1)
- (c) Ammonia is synthesized by the Haber process.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

- (i) State the sources of both the nitrogen and hydrogen needed for the Haber process. [2]
- (ii) State the essential conditions for the Haber process. [2]
- (d) Fertilisers are added to the soil to improve crop yields. A farmer has the choice of two fertilisers, ammonium nitrate, NH₄NO₃, or diammonium hydrogen phosphate, (NH₄)₂HPO₄.

Show by calculation which of these fertilisers contains the greater percentage of nitrogen by mass.

You must show your working.

[3]

(e) State one major problem caused when the nitrates from fertilisers leach from the soil into streams and rivers.

0333-4277385

3/52/1

WSO – Nitrogen & Sulphur

Rasheed Ahmed

A/O Level Chemistry

The diagram shows the stages in the manufacture of sulphuric acid.

(a) In the furnace, an ore containing zinc sulphide, ZnS, is heated in oxygen to make zinc oxide, ZnO, and sulphur dioxide.

Write an equation for this reaction.

[1]

(b) In the converter, sulphur dioxide and oxygen are passed over a series of catalyst beds at a temperature of about 420 °C.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ}$

- An increase in pressure increases the yield of sulphur trioxide. Explain the reason for this [1] effect.
- (ii) Even though an increase in pressure increases the yield of sulphur trioxide, the reaction in the converter is carried out at atmospheric pressure. [1] Suggest a reason for this.
- In some sulphuric acid plants, the gases are cooled when they pass from one catalyst [2] bed to the next. Use the equation to explain why the gases need to be cooled.
- (c) When sulphuric acid is reacted with excess iron powder, iron(II) sulphate and hydrogen are produced.

Suggest how crystals of iron(II) sulphate could be prepared from this reaction mixture.

(d) 12.0 cm³ of an aqueous solution of sulphuric acid exactly neutralised 20.0 cm³ of a solution of sodium hydroxide of concentration 0.150 mol/dm3.

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

Calculate the concentration, in mol/dm3 of the aqueous sulphuric acid.

13

[2]

0333-4277385

WSO - Nitrogen & Sulphur